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Abstract 

The George B. Moody PhysioNet Challenge 2023 

focused on predicting neurological recovery from coma 

after cardiac arrest by longitudinal electroencephalogram 

(EEG). Our team, MetaHeart_YNNU, proposed a novel 

approach to predict good and poor patient outcomes after 

cardiac arrest by combing short-time Fourier transform 

(STFT) and 3-dimensional (3-D) residual neural network. 

Firstly, a 90-second signal segment was obtained from the 

8-channel EEG recording of each hour by truncating the 

first 15 seconds every 10 minutes, and then these segments 

from each hour were transformed into the time-frequency 

spectrograms by STFT to obtain a richer representation of 

neurological activity. Secondly, a modified 3-D residual 

neural network was designed to extract the complex 

physiological patterns of neurological activity from hour, 

time-frequency dimensions, respectively. Thirdly, a joint 

loss combing binary focal loss and recall loss was 

designed in our approach. The binary focal loss alleviated 

the class imbalance problem by paying more attention to 

hard-to-distinguish samples. The recall loss was adopted 

to reduce the probability that patients with the true good 

label were misclassified into the poor category by 

maximizing the recall rate of the good category. Finally, 

our proposed model received a Challenge score of 0.56 

(ranked 12th out of 36 teams) on the hidden test set. 

 

 

 

 

 

 

 

1. Introduction 

More than 6 million cardiac arrests happen every year 

worldwide, which may cause the severe brain injury for 

patients surviving initial resuscitation and seriously 

threaten people’s lives [1]. Electroencephalogram (EEG) 

can reflect the recovery of brain consciousness in cardiac 

arrest patients and assist neurophysiologists to give an 

objective prognosis [2-3]. The George B. Moody 

PhysioNet Challenge 2023 is devoted to predict 

neurological recovery for cardiac arrest patients who 

present to the hospital in a coma by using basic clinical 

information and EEG and ECG recordings [4-5]. The 

participants were asked to build an algorithm that can 

identify whether the patient outcome is poor or good, as 

well as the level of neurological recovery for cardiac arrest 

patients. In this work, we proposed a novel approach to 

achieve the target by combing short-time Fourier transform 

(STFT) and 3-dimensional (3-D) residual neural network. 

The EEG data truncated from each hour was transformed 

into a time-frequency spectrogram by using STFT. The 72-

hour time-frequency spectrograms were stacked together 

to form a 3-D tensor involved hour, time-frequency 

dimensions. A modified 3-D residual network was built to 

extract the complex physiological patterns of neurological 

activity. A joint loss combing binary focal loss and recall 

loss was designed to optimize our model. We introduced 

an ensemble prediction strategy to improve the robustness 

of model predictions in model prediction process. Our final 

selected entry was firstly 5-fold cross-validated on the 

public training set and then was scored on the hidden 

validation set by the Challenge organizers. Ultimately, our 

final selected entry was scored as well as ranked on the 

hidden test set with the Challenge metric. 
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2. Methods 

2.1. Datasets and Preprocessing 

The Challenge data originates from the International 

Cardiac Arrest EEG Consortium (ICARE), which was 

collected from 1,020 cardiac arrest patients from seven 

hospital in Europe and the U.S. [6]. The Challenge data is 

divided into the public training set, the hidden validation 

set and the hidden test set in proportions of 60%, 10%, and 

30%, respectively [4]. Each patient in the Challenge data 

has multi-modal physiological signals including EEG, 

ECG and/or other clinical time series data. The data was 

recorded from several hours after the cardiac arrest 

occurred, and the length of data duration could vary from 

several hours to days. 

In this work, we only used EEG to predict neurological 

recovery in cardiac arrest patients. We applied the 

following data pre-processing procedures. Firstly, to 

reduce memory usage and speed up the inference process, 

we chose 8 typical channels covering most brain areas 

from the 19-channel EEGs, namely Fp1, Fp2, F3, F4, C3, 

C4, P3, P4. The selected 8-channel EEGs were resampled 

to 100 Hz, and then we applied a bandpass filter with a 

cutoff frequency of 0.7~30Hz to the EEG signal to 

eliminate baseline drift and power frequency noise. 
Secondly, to reduce the memory usage and speed up the 

calculation, we selected 90-second signal segment from 

the 8-channel EEG recording of each hour by truncating 

the first 15 seconds every 10 minutes. These segments 

from each hour were transformed into the time-frequency 

spectrograms of the shape (65, 283) by using short-time 

Fourier transform to obtain a richer representation of 

neurological activity. Where 65 is the size in the frequency 

dimension and 283 is the size in the time dimension. And 

then, Z-score normalization was applied to normalize each 

spectrum. Thirdly, the 72-hour time-frequency 

spectrograms were stacked together to form a 3-D tensor 

with shape of (72, 65, 283) involved hour, time-frequency 

dimensions, respectively. 

 

2.2. Model Architecture 

Since the 72-hour EEG data is massive, in order to more 

effectively capture the continuous changes of neurological 

activity patterns from the cardiac arrest patients, we 

modeled this problem as a 3-D time series variation, that is, 

hour, time-frequency dimensions. Given that deep residual 

networks have effective feature extraction capabilities [7-

8]. A 16-layer 3-D residual neural network was built in our 

approach. The overall structure of the model was shown in 

Figure 1. The input shape of main network is (8, 72, 65, 

283), which denotes a sample consists of 72 groups (i.e. 72 

hours) of time-frequency spectrograms with shape of (65, 

283) from 8 channels. The input data was first fed into a 

convolution layer with convolution kernel size (5, 5, 7) and 

using stride 2. 6 residual blocks were stacked to form the 

backbone of network. After the global average pooling 

(GAP) operation, the length of feature vectors was 

converted to 2 (number of categories) by using a linear 

operation. Then, the classifier logit outputs were forwarded 

into the loss function. ReLU is adopted to all layers except 

for the output layer, and the output layer uses Softmax 

because the neurological outcome prediction is a mutually 

exclusive binary classification task in this year's Challenge. 

Softmax can map the model output to a vector whose 

probability values add up to 1. 

 
Figure 1. The architecture diagram of our proposed approach. (a) One batch input data for the 3-D residual neural 

network. (b) The model architecture of 3-D deep residual neural network. (c) 3-D residual block. 
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2.3. Loss Functions 

We adopted the joint supervision of binary focal loss and 

recall loss to train the proposed model. The total loss 

formulation is given in Eq. 1. 

𝐿 = 𝑙1 + 𝜆 ∗ 𝑙2                               (1) 

where the 𝜆 denotes a hyper parameter for balancing the 

two loss functions. In this work, 𝜆 is set to 0.5. 

 

Binary Focal Loss 

We counted the number of samples for poor and good 

categories in the public training set, there was a slight class 

imbalance in the Challenge data, which could domain the 

optimization process, and easily classified samples 

comprise the majority of the loss and dominate the 

gradients while under-emphasizing gradients from hard 

classified samples during training. 

Inspired by Lin et al [9], we introduced the binary focal 

loss for our proposed model training to alleviate the above 

problems, and which is defined as Eq. 2. 

𝑙1 = −
1

𝑚
∑ 𝛼 ∗ (1 − 𝑝𝑡)𝛾 ∗ 𝑙𝑜𝑔(𝑝𝑡)

𝑚

𝑖=1

        (2) 

where 

𝑝𝑡 = {
𝑝,                  𝑖𝑓 𝑦 = 1

1 − 𝑝,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (3) 

where 𝑝  denotes the model’s corresponding prediction 

probability for the true label 𝑦 = 1. The weighting factor 

𝛼 and the tunable focusing parameter 𝛾 are set to 1 and 

2, respectively. The total average is considered as the focal 

loss term. 

 

Recall Loss 

In this year's Challenge, the scoring metric is calculated 

as the true positive rate (TPR) for predicting a poor 

outcome given a false positive rate (FPR) of less than or 

equal to 0.05 at 72 hours after return of spontaneous 

circulation, which is more inclined to make the recall rate 

high enough for good category. The scoring metric does 

not expect the patients with true good labels to be 

mistakenly classified as poor, so that the patients with true 

good labels lose more treatment resources. In order to 

make the model maintain the above prejudice, the recall 

loss is introduced to optimize the model. We prefer to 

maximize the recall rate of the good category to reduce the 

probability that patients with the true good labels were 

misclassified into the poor category, therefore, the recall 

loss is defined as Eq. 4: 

𝑙2 = 1 − 𝑚𝑒𝑎𝑛(𝑟𝑒𝑐𝑎𝑙𝑙𝑔𝑜𝑜𝑑)                        (4) 

𝑤ℎ𝑒𝑟𝑒   𝑟𝑒𝑐𝑎𝑙𝑙𝑔𝑜𝑜𝑑 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                    (5) 

Where 𝑇𝑁 denotes the number of patients with true good 

labels who are predicted as good. Where 𝐹𝑃 denotes the 

number of patients with true good labels who are predicted 

as poor. 

As above, the binary focal loss and recall loss were 

adopted to simultaneously optimize our proposed model, 

which allows the model to perform binary classification 

while ensuring a higher recall rate for the good category. 
 

2.4. Model Training 

Our proposed model is trained 25 epochs with a batch 

size of 12 using an NVIDIA GeForce RTX 3090. Adam 

optimizer with an initial learning rate of 0.0005 was 

applied for model optimization. The multiple step learning 

rate scheduler was adopted to dynamically adjust the 

learning rate in the training process, and the strategy of 

reducing the learning rate with a ratio of 0.5 during training 

was adopted to speed up model convergence. Model 

training is stopped when the model's score on the 

validation set does not improve after 13 epochs. The 

optimal hyper-parameter of our network (convolution 

kernel size, dropout rate, number of residual blocks, etc.) 

and the parameters of loss function (loss balancing factor 

𝜆, weighting factor 𝛼, and tunable focusing parameter 𝛾) 

are selected according to the model’s 5-fold cross 

validation performance on the public training set. 

 

2.5. Model Prediction 

Considering that the data continuously monitored for 72 

hours is massive, under the conditions of limited 

computing and memory resources, it is impossible to 

traverse all the data to make the final prediction. However, 

it is very necessary to use as much data as possible to 

support model predictions, which can improve the 

robustness of model prediction results. To address this 

problem, we use an ensemble learning strategy to vote on 

multiple prediction results. Specifically, we extracted 5 

groups of data in each hour by truncating a 15-second 

signal segment every 10 minutes to implement model 

prediction integration. For the prediction of a certain class 

such as poor, only when the number of prediction results is 

greater than or equal to 3, the class is finally predicted as 

poor, otherwise good. The average of the 5 groups of 

outcome probabilities is taken as the final predicted 

outcome probability output of the model. 

 

3. Results 

We evaluated our proposed algorithms through 5-fold 

cross-validation on the public training set with the official 

Challenge metric. The Challenge scores on both the public 

training set, hidden validation set, and hidden test set that 

our final selected entry obtained were shown in Table 1. 

Training Validation Test Ranking 

0.54±0.08 0.58 0.56 12/36 

Table 1. True positive rate at a false positive rate of 0.05 

(the official Challenge score) for our final selected entry 

Page 3



(team MetaHeart_YNNU), including the ranking of our 

team on the hidden test set. We used 5-fold cross validation 

on the public training set, repeated scoring on the hidden 

validation set, and one-time scoring on the hidden test set. 

 

4. Discussion and Conclusions 

The 72-hour longitudinal EEG recordings provide an 

opportunity to objectively evaluate the neurological 

recovery of cardiac arrest patients. Considering the non-

stationary characteristics of EEG signals, we used short-

time Fourier transform technology to represent the changes 

of neurological activity patterns. We considered the 

changes of neurological activity patterns in the several 

hours and days after cardiac arrest to be critical 

information for identifying neurological recovery. 

Therefore, we adopted 3-D convolution to capture the 

patterns features switching in hour-dimensional. Although 

we believed that our approach was relatively reasonable, 

the performance of the approach on the public training set 

and the hidden validation set is not significant, which 

makes us wonder whether it is because our approach failed 

to capture the more general features from 72-hour 

longitudinal EEGs. In addition, severe data missing and 

irregular external defibrillation operations may also be the 

reasons for the poor performance of our model. 

In this paper, we proposed a novel approach to predict 

good and poor patient outcomes after cardiac arrest by 

combing short-time Fourier transform (STFT) and 3-D 

residual neural network. The longitudinal EEG recordings 

were transformed into time-frequency spectrums to obtain 

a richer representation of neurological activity. By jointly 

optimizing the proposed model using binary focal loss and 

recall loss, our model could perform binary classification 

while ensuring a higher recall rate for the good category. 

In addition, an ensemble prediction strategy was adopted 

to improve the robustness of model predictions by voting 

on five prediction results in model prediction process. Our 

proposed models were firstly evaluated on the public 

training set, we achieved 5-fold cross-validation score of 

0.54 with the Challenge evaluation metric. Finally, our 

classifier received a Challenge score of 0.56 (ranked 12th 

out of 36 teams) on the hidden test set. 
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